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Abstract-Effective detection of botnet traffic becomes difficult 
as the attackers use encrypted payload and dynamically changing 
port numbers (protocols) to bypass signature based detection 
and deep packet inspection. In this paper, we build a normal 
profiling-based botnet detection system using three unsupervised 
learning algorithms on service-based flow-based data , including 
self-organizing map, local outlier, and k-NN outlier factors. 
Evaluations on publicly available botnet data sets show that the 
proposed system could reach up to 91 % detection rate with a 
false alarm rate of 5%. 

I. INT RODUCTION 

The convenient and rapid Internet access not only facilitates 

many Internet services, but also accelerates the spreading 

of malicious software and making the detection efforts very 

difficult. One type of malicious software that takes the ad­

vantage of the Internet is a botnet, which spreads itself to 

other machines (via e-mail, OS vulnerabilities, etc), conducts 

resource-exhaustion attacks like such as Distributed Denial 

of Service (DDoS) and steals user data. The detection on 

network traffic is critical in preventing botnet spreading, but 

has some challenges. One of those challenges is the exis­

tence of encrypted normal traffic, including encrypted web 

services such as social media (Facebook, Twitter) and VoIP 

(Voice over IP). Consequently, botnets can hide their payload 

characteristic by encryption. Furthermore, dynamic ports and 

change of protocols enable botnets to bypass signature-based 

firewalls and intrusion detection systems (IDS). For robust 

detection systems, several [1] [2] [3] flow-based botnet detec­

tion approaches have been proposed without packet payload 

information. 

The analysis on known botnets shows that they have varying 

network access patterns, including single-packet information 

(e.g. layer-4 protocol) and flow-based statistical information 

(e.g. numbers of packets per flow). Moreover, some botnets 

have specific purposes that could be customized by the owners 

and are unconventional. Thus, anomaly based IDS on the 

normal traffic behaviors attract more attention from researchers 

[4] [5] to detect both known and unknown botnets. 

In this paper, we employ three unsupervised learning algo­

rithms namely self-organizing map (SOM), local outlier factor 

(LOF), and k-NN outlier (k-NN Outlier) factor to build a 

normal behaviour profiling system for detecting and analyzing 
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different botnet behaviours. SOM provides visualization of 

the clustering distribution in two-dimensional space. LOF and 

k-NN Outlier algorithms are two instance based clustering 

algorithms that are shown to work well in the literature [6] [7] 

anomaly detection which also uses only normal behaviour for 

training as our proposed system. In our proposed approach, the 

normal traffic data are separated by services to build service­

specific sub-detectors, and the botnet detection is conducted 

by these sub-detectors. Our evaluations on publicly available 

normal and botnet traffic data sets show that the proposed 

system achieves over 91 % for detection rate. 

The rest of paper is organized as follows. The related 

work is summarized in Section II. The system framework and 

unsupervised algorithms are introduced in Section III. Section 

IV presents the experiments and results. Finally, conclusions 

are drawn and the future work is discussed in Section V. 

II. REL ATED WORK 

Many researches have been conducted in botnet detection. 

Gu et al. in [1] demonstrated a botnet detection framework 

called BotMiner, which used A-Plane to monitor system logs 

to detect host-based attacks and the C-Plane to monitor the 

network traffic to detect network-based attacks. The system 

was tested on IRC, HTTP and P2P botnet traffic and had 

75%-100% detection rate and less than 0.03% false positive 

rate. Feily et al. [8] surveyed botnet behaviours and detection 

techniques, and classified them to four categories: signature­

based, anomaly-based, DNS-based, and mining-based. Zhang 

et al. [9] focused on two botnet mechanisms: Fast Flux and 

Domain Flux, while they are not flow-based. Mai and Park 

compared three unsupervised learning algorithms based on 

network flows [2]. The best detection rate of 97.11 % was 

achieved by K-means learning algorithm. However, the false 

alarm rate was not given. Yin et al. [10] investigated neural 

network and genetic algorithms for botnet detection using their 

own captured flow-based data set. They reported a detection 

rate of 95.7% and false alarm rate of 4.3%. Al-Jarrah et al. 

proposed a system based on data randomization and cluster­

based partitioning [11]. They achieved the best detection 

rate of 99.42% on the ISOT benchmark data set. Haddadi 

et al. proposed different aspects of their flow based botnet 

detection system using supervised learning algorithms [3]. 



learning Model 

Fig. 1. Service-Based Normal Behaviour Profiling System framework 

They achieved detection rates up to 100% with low false alarm 

rates. Liu et al. proposed an anomaly detection system named 

'Opprentice' by making use of supervised learning algorithms 

and KPI features [12]. 

In summary, to the best of our knowledge, none of the above 

works have tested normal behaviour profiling using unsuper­

vised learning algorithms and service based construction on 

network traffic flow data. 

III. SY STEM FRAMEWORK AND LE ARNING ALGORIT HMS 

Figure 1 shows the service-based normal behaviour profiling 

system for botnet detection, which has three components: 

(i) feature construction; (ii) model building and learning; 

(iii) data visualization and anomaly detection. In the feature 

construction component, all the traffic flows I are grouped by 

the destination port numbers. For example, normal traffic to 

destination port 53 is typically a DNS request. This type of 

traffic is different from the network flows with the destination 

port number 80, i.e. HTTP requests. Hence, all the flows are 

put into 13 groups (detailed in following). In the proposed sys­

tem, each group has its specified sub-detector. Sub-detectors 

are constructed based on one of the unsupervised learning 

algorithms, which are detailed in the following subsections. 

Note that the proposed system uses only normal traffic flows 

in the training phase, that is why it is a normal behaviour 

profiling system. In this work, we aim to explore how far 

we can push an unsupervised learning system towards botnet 

detection without using any attack traffic during the training 

phase. 

In our approach, the boundaries (in the clustering/grouping 

of data) are used to differentiate botnet traffic from normal 

traffic. Boundaries are based on the distribution of normal 

traffic. They represent the threshold of the distance from nor­

mal clustering/grouping in unsupervised learning algorithms. 

When testing the model on unforeseen traffic flows, if the 

I Traffic flow is defined as a logical equivalent for a call or a connection in 
association with a user specified group of elements [13]. The most common 
way to identify a traffic flow is to classify the 5-tupIe from the packet header. 

new flow is within the boundary, it is classified as normal, 

otherwise as suspicious (attack). 

A. Self-organizing map (SaM) 

Self-organizing map is an unsupervised clustering algorithm 

proposed by Kohonen [14]. SOM has been widely used for 

intrusion detection [15], [16], [17]. One of the advantages of 

SOM is the reduction and visualization to two-dimensional 

plane of the multidimensional input data. 

SOM has three training steps: sampling, similarity match­

ing, updating. These three steps are repeated until the map 

converges (or reaches the defined epochs). Each neuron i has 

a d-dimensional weight vector Wi = {Wil, Wil, ... , Wid}. 
Given X as a d-dimensional input sample vector, the algorithm 

is described as the following: 

• Initialization: Choose random values to initialize all the 

weight vectors Wi(O) , i = [I, M] n Z where M is the 

total number of neurons in the self-organizing map. 

• Sampling: Choose a sample data X from the input space 

following an order (e.g., randomized before sampling). 

• Similarity Matching: For each sample X, find the best 

matching unit (BMU), i.e. winner neuron of X, denoted 

here by b. The BMU is the neuron to X with minimum 

Euclidean distance, at time step n (nth training iteration), 

Eq. 1. 

b = argmin IIX - Wi(n)II, i = [I,M] n Z (1) 
t 

• Updating: Adjust weight vectors of all neurons, Eq. 2. 

Where 1] (n) denotes the learning rate of the nth training 

iteration and hb,i(n) is the selected neighbourhood kernel 

function centred on the winner neuron for SOM. 

• Continuation: Continue until the SOM map converges or 

reached the defined maximum training epochs N. 

In this work, we used a lOxlO SOM for each sub-detector 

and linked distance as the neighbourhood kernel function. The 

outlier factor from SOM is a weighted sum denoted by the 

distance to the first, second, and third BMUs, Eq 3. 

SOF(A) = IIA - WBMU(n) 11 
+ 0.5 x IIA - WBMU-2nd(n)11 
+ 0.3 x IIA - WBMU-3rd(n) I I (3) 

B. Local outlier factor (LOF) 

LOF is an unsupervised learning algorithm that detects 

outliers in a given data set. LOF is proposed by Breunig et al. 

[18] and has been used for intrusion detection in the literature 

[6] [7]. LOF works by first calculating the local reachability 

density of an instance A to its kth nearest neighbours Nk(A) 
using Eq. 4. 

LBENdA) reachableDistk(A, B) 
Ird(A) = 1/ 

INk(A)1 
(4) 
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The reachable distance reachableDistk(A, B) is calculated 

using Eq. 5, where kDist(B) is the distance of B to its kth 
neighbour and d(A, B) is the distance between A and B. 

reachableDistk(A, B) = max{kDist(B), d(A, B)} (5) 

The LOF is computed with the local reach ability density of 

an instance A and that of its neighbours using Eq. 6. 

LOF(A) = 
LBENdA) Ird(B) 

/1 d(A) 
INk(A) 1 

r (6) 

The larger LOF means the higher probability of being an 

outlier. In this work, k is set to 3 (empirically) in the tests. 

C. k-NN outlier 

The k-NN outlier is an instance-based unsupervised learning 

algorithm with the concept of k-nearest-neighbour (KNN). It 

was first introduced by Ramaswamy et al. [19] for mining 

outliers from large data sets. The outlier uses the the distance 

of an instance to the kth neighbour, calculated according to 

Eq. 7, where kDist(A) is the distance of instance A to the kth 
neighbour. 

KOF(A) = kDist(A) (7) 

If an instance has large kNN value, it is likely to be an 

outlier. k-NN outlier has been evaluated for intrusion detection 

in the literature [7]. To be consistent with LOF, k is set to 3 

in the following experiments. 

IV. EXPERIMENTAL SETUPS AND RESULT S 

We evaluated the proposed system based on the aforemen­

tioned unsupervised learning algorithms using CTU-13 data 

sets. These were captured at CTU and made publicly available 

[20]. 

A. CTU-13 data set 

CTU-13 has 13 different datasets, each one is specified 

for a botnet, and in total 7 botnet malwares are analysed 

[21]. The botnet activities include email spam.click fraud, 

and DDoS. CTU labelled the traffic as: Background, Botnet, 

C&C Channels and Normal. In our work, the most frequent 

11 destination port numbers are used to group the TCP/UDP 

flows, and the rest of the TCPIUDP and ICMP flows are 

grouped into two additional groups, respectively. Table I 

summarizes of the traffic flows based on different services 

using destination port numbers. 

B. Feature preprocessing 

We select 8 out of 14 features from the CTU-13 data set 

that are listed in Table II. They are regarded as basic features. 

Additionally, we introduce eight new derived features. 

Based on the numerical distribution of features, such as 

duration, we observed that most flows have shorter duration 

than 350 seconds. However, there are still some flows with 

extremely long duration more than 3000 seconds. 

TABLE I 
SUMMARY OF THE DATA SETS BASED ON DIFFERENT NETWORK 

SERVICES 

Port lANA # of normal # of botnet 
number registered flows flows 
53 ./ 222.516 145.920 
80 .( 100.495 26.546 
443 .; 21,331 34,268 
27015 2,325 2 
123 .( 1,406 49 

TCP/UDP 
27016 358 0 
27017 286 1 
27031 266 1 
5222 .; 184 0 
8950 178 0 
27018 170 0 
Others - 3,316 122,912 

ICMP - - 3,292 114,997 

TABLE II 
FEATURES OF CTU-13 DATA 

Features Description 
Duration Duration of the connection in seconds 
Protocol Type of the protocol (TCP, UDP, ICMP) 

DPort The port of the connection destination 
dTos Type of Service from destination to source 

SrcBytes Total bytes from source to destination 
TotBytes Total bytes of the flow 
TotPkts Total packets of the flow 

Dir Direction of the flow 
Derived Features 

BytesPerPkt Average bytes per packet 
SrcB ytesRatioPerFlow Ratio of SrcBytes within TotBytes 

Duration! Minimal value of Duration and threshold 
Duration" Log value of Duration 
TotBytes! Minimal value of TotBytes and threshold 
Tot Bytes" Log value of TotBytes 
SrcBytes' Minimal value of SrcBytes the threshold 
SrcBytes" Log value of SrcBytes 
TotPkts1 Minimal value of TotPkts the threshold 
TotPkts" Log value of TotPkts 

In order to emphasize the differences in durations after the 

normalization, instead of the original duration (Du ration 0), we 

derived two features (Durationl and Duration2). The derived 

features are calculated using Eq. 8 and 9. Eq. 8 aims to 

present the long durations using a threshold (DurationT). On 

the other hand, Eq. 9 aims to show the differences of those 

short durations. 

Durationl 
= min(Durationo, DurationT) (8) 

Duration2 
= 10g(Durationo) (9) 

We used a similar approach to derive new features to 

represent: total bytes, total packets, and source bytes. 

C. Traffic distribution for different services 

After training the SOM map using the normal traffic data, 

we used U-Matrixes and Hit Histograms of SOM models to 

visualize the data distributions of different services. Generally, 

port 80 and 443 are ports associated with web traffic. Port 443 

is associated with HTTPS, which is the secure (encrypted) 

HTTP protocol over TLS/SSL, and Port 80 is associated with 
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Fig. 3. Value Distribution of Durations for the traffic on Port 80 

unencrypted HTTP traffic. Fig. 2 and 3 show the U-Matrix 

on port 443 and 80. The lighter the colour of the hexagon 

becomes, the shorter the distance is. 

Based on the U-Matrixes and the hit histograms, we can 

see that the distribution of the traffic on port 443 and port 

80 are different. The fact that flows for Port 443 (HTTPS) is 

more centred It supports the assumption that different types of 

normal traffic flows behave differently. The different behaviors 

might be caused by the different amount of data and durations 

in the traffic flows. 

D. Outlier decision boundary calculation 

The assumption of this work is that botnet (malicious) traffic 

flows vary from different normal traffic flows. Moreover, we 

assume that botnet flows are outliers compared to the nor­

mal traffic flows. The three unsupervised learning algorithms 

provided an outlier factor. Hence we need to identify an 

outlier decision boundary, which can be selected based on the 

distribution of the normal traffic. 

In particular, the instances in the boundary are regarded as 

normal (in our prediction), otherwise as suspicious traffic, i.e. 

potential attacks to report to the system administrators. We 

use a naive decision boundary calculation based on outlier 

factors in normal training data. With a training set of normal 

traffic for a specific service (Norma It), the outlier factor value 

(ON) is calculated for each normal traffic instance (flow). 

Then, the decision boundary value is set to the value of the 

(30F percentile of the outlier factor values of all normal traffic 

flows during training. For example, if (30F is set as 85%, then 

15% of normal (training) traffic flows are regarded as false 

positives. The algorithm which is used to calculate the outlier 

decision boundary (DecBV), is given in Fig. 4. 

In our work, the SOM outlier factor of instance i is the 

1: procedure OFTHRESHOLD_C AL(N ormalt, (30F) 
2: i f--0 

3: Calculate outlier factor value for each traffic based on 

three different learning algorithms 

4: while i � = IN ormalt I do 

5: ON[i] f--SOF(Normaltli]) 
6: or 

7: ON[i] f--LOF(Normaltli]) 
or 

[>SOM 

[> LOF 

8: 

9: 

10: 

11: 

12: 

13: 

ON[i] f--KOF(Normaltli]) [> kNN 

if--i + l  
DecBV f--(30F percentile of sorted ON[l..·INormaltl] 
The sorting order is ascending. 

return DecBV 

Fig. 4. Algorithm for the outlier factor threshold calculation 

weighted sum of distances to its first, second, and third BMUs, 

as Eg. 3. The weights are 1, 0.5, and 0.3, respectively. For 

the LOF and k-NN, the outlier factors are from Eg. 6 and 7, 

respectively. 

Note that our proposed approach is service-based, the value 

DecBV varies for each service group of flows. 

E. Botnet detection results and discussion 

In our evaluations, we used 70% of the normal flows for 

training and the remaining 30% of the normal flows and all 

botnet flows for testing. We did not use the flows labelled 

as "Background" traffic, given that the ground truth for those 

flows are unknown. We use the metrics of false positive rate 

(FPR) and detection rate (DR) to evaluate the performance of 

the proposed system according to Eg. 10 and 11. 

FPR = Number of Normal Detected as Attack 
Total Number of Normal Connections 

Number of Detected Attacks DR = =-----:--::-::--:---'----=----:---,-----,:,---­
Total Number of Attack Connections 

(10) 

(II) 

In this work, we experimented with the (30F value from 

1 % to 15%. Table III and IV shows the DR and FPR results 

of all three learning algorithms given different values of 

(30F based on with and with out derived features. Based on 

these results, k-NN outlier performs better than others in 

both scenarios. Without derived features, the detection rate 

is much lower, although the false positive rates are similar. 

With derived features, the proposed system achieved around 

91 % of detection rate with 5% false alarm rate (given that it 

is a normal profiling system). 

As our proposed system is service-based normal profiling, 

we also investigate the performance on each service-based 

group. Fig. 5-10 show the performances of three unsupervised 

algorithms on different services where there is botnet traffic 

in the testing sets. It shows that all algorithms perform well 

on ICMP traffic flows, with approximately 100% detection 

rate and about 1 % false positive rate. The detection rate of 

the botnet flows on port 80 and 53 does not increase with 

higher (30F value. We assume that the reason behind is that the 
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TABLE III 
OVERALL EVALUATION RESULTS WITHOUT DERIVED FEATURES 

/30F(%) 
SOM LOF k-NN Outlier 

DR FPR DR FPR DR FPR 
15 78. 9 15.2 61. 6 16. 8 75.5 15.0 
14 77. 6 14. 2 60. 8 15. 7 75.0 14.0 
13 76.5 13. 2 60. 0 14. 6 73.3 13.0 
12 75. 8 12. 2 57. 2 13. 4 64.5 12.0 
11 73. 9 11. 2 55. 6 12. 1 64.0 11.0 
10 72. 6 10. 2 54. 0 11. 0 63. 7 10.1 
9 46. 6 9. 1 52. 8 9. 7 63.1 9. 0 
8 44. 7 8. 1 51. 0 8. 6 62.5 8. 1 
7 42. 9 7. 0 24. 0 7.3 61. 6 7. 1 
6 41. 4 6. 0 22.5 6.2 60.4 6. 0 
5 40.0 5.1 20.8 5.1 593 5.0 
4 37. 8 4. 1 18. 7 4.1 57.3 4. 0 
3 36.5 3. 1 15. 8 3.1 51. 7 3. 0 
2 36. 1 2. 2 12. 3 2.0 47. 7 2. 0 
1 33. 3 1. 1 6.9 0.3 40.9 1. 0 

traffic flows destines to these two port numbers (80 and 53) are 

sparser than the others_ Moreover, k-NN outlier performs the 

best in this case, on destination port 80 (HTTP) and 53 (DNS) 

compared to the other two algorithms. On ports 27015, 27017, 

and 27031, although there are only one or two (see Table I) 

botnet traffic flows in the test data set, our proposed system is 

still able to detect this one to two flows under very unbalanced 

(normal to attack) conditions. In these cases, the detection rate 

raised to 100% when the false positive rate was around 7% 

to 8%. Based on the overall results on the CTU-13 dataset, 

k-NN Outlier performs better than the other two algorithms 

in generaL However, SOM performs better on the traffic of 

TABLE IV 
OVERALL EVALUATION RESULTS WITH DERIVED FEATURES 

/30F(%) 
SOM LOF k-NN Outlier 

DR FPR DR FPR DR FPR 
15 93. 8 15.2 84.4 16. 7 98. 2 15.0 
14 93. 3 14. 1 83.5 15. 8 97. 9 14. 0 
13 92. 6 13. 2 82. 6 14. 8 97. 6 13. 0 
12 91. 6 12. 2 81. 6 13. 7 97. 3 12. 0 
11 90. 9 11. 2 80.1 12. 6 97. 1 11. 0 
10 89. 2 10. 2 78. 8 11.3 96. 8 10. 0 
9 88. 4 9. 2 77.3 10.2 96.5 9. 0 
8 86.5 8.1 74. 7 8. 9 95. 4 8. 0 
7 84. 9 7. 1 47.5 7. 6 94. 1 7. 1 
6 76. 7 6.1 46.2 6.5 92. 7 6. 1 
5 73.2 5.1 383 5.3 913 5.1 
4 69. 6 4.1 36.1 4. 1 82. 1 4. 1 
3 65.3 3. 1 17. 7 3. 1 78. 6 3. 1 
2 63. 2 2.1 14.2 2. 0 57.5 2. 1 
1 44. 3 1.1 1.0 0. 4 50. 8 1. 0 

some specific port number, such as 27017_ This implies that 

the combination of the algorithms might return better results_ 

The investigation of other unsupervised algorithms and the 

combinations of the algorithms are left for future work. 

V. CONCLUSION AND FUTURE WORK 

In this research, we explored three unsupervised learning 

algorithms: SOM, LOF and k-NN outlier for service-based 

botnet detection using normal behaviour profiling. Data sets 

from CTU-13 have been used to evaluate the proposed system. 

The overall results show that k-NN outlier performs better 

than the others. Moreover, SOM provided the advantage of 
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visualization of data distribution with the SOM V-matrix and 

hit-histogram. 

The detection rates and false alarm rates on CTV-13 data 

sets showed that without any a priori knowledge of the botnet 

attacks, k-NN achieves over 91 % detection rate with around 

5% false alarm rate. These results show that the derived 

features we propose seem to improve the performance. 

In this work, a na"ive decision boundary calculation method 

is used. For the future work, we plan to employ more robust 

and adaptive functions to calculate the decision boundary 

based on the overall distribution of the normal behaviours. 

The proposed normal profiling system has shown promising 

performances on 13 different datasets (over 90% detection 

rate with very low false alarm rates) to detect new suspicious 

behaviors. Even better performances can be gained by com­

bining this system with supervised learning algorithms when 

there are known anomalies in the traffic. In the future, we also 

aim to evaluate the system on other traffic datasets, such as 

SimpleWeb SSH datasets [22] [23] and extend the proposed 

system to other anomaly detection tasks, as normal profiling is 

a robust and practical approach for anomaly detection without 

positive samples. 
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